Pairwise Independence of Jointly Dependent Variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pairwise Independence and Derandomization Pairwise Independence and Derandomization

This article gives several applications of the following paradigm, which has proven extremely powerful in algorithm design and computational complexity. First, design a probabilistic algorithm for a given problem. Then, show that the correctness analysis of the algorithm remains valid even when the random strings used by the algorithm do not come from the uniform distribution, but rather from a...

متن کامل

Wavelets for Nonparametric Stochastic Regression with Pairwise Negative Quadrant Dependent Random Variables

We propose a wavelet based stochastic regression function estimator for the estimation of the regression function for a sequence of pairwise negative quadrant dependent random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator are investigated. It is found that the estimators have similar properties to their counterparts st...

متن کامل

Jointly distributed random variables

Similarly we can get the distribution function of Y easily from the joint distribution function of X and Y : FY (y) = lim x→∞ (x, y) = F (∞, y). The distribution functions FX and FY are sometimes called the marginal distribution functions of X and Y respectively. The joint distribution function F of X and Y contains all the statistical information about X and Y . In particular, given the joint ...

متن کامل

Pairwise Independence and Derandomization

This article gives several applications of the following paradigm, which has proven extremely powerful in algorithm design and computational complexity. First, design a probabilistic algorithm for a given problem. Then, show that the correctness analysis of the algorithm remains valid even when the random strings used by the algorithm do not come from the uniform distribution, but rather from a...

متن کامل

Entropy Versus Pairwise Independence

We give lower bounds on the joint entropy of n pairwise independent random variables. We show that if the variables have no dominant value (their min-entropies are bounded away from zero) then this joint entropy grows as Ω(log n). This rate of growth is known to be best possible. If k-wise independence is assumed, we obtain an optimal Ω(k log n) lower bound for not too large k. We also show tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Mathematical Statistics

سال: 1962

ISSN: 0003-4851

DOI: 10.1214/aoms/1177704732